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FOREWORD 

The flight of a gliding parachute in a uniform wind field is examined using the methods 

of Optimal Control Theory. Thfr report pre» nts this analysis and is part of a continuing 

effort directed toward investigating methods which will improve the accuracy and dispersion 

characteristics of airdrop systems. 

This study was conducted i»«*ier Department of the Army Project 

No. 1F162203AA33 Drop Zore Dispersion Studies by Dr. Allan E. Pearson, Professor, 

division of Engineering, Brown University while he was assigned to the Airdrop Engineering 

Laboratory as a visiting scientist. 

Appreciation is extended Mr. Thomas F. Goodrich, Mr. Arthur L. Murphy, Jr., and 

Dr. Edward W. Ross of the U. S. Army Natick Laboratories for their help during this 

study. 
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I.     Introduction 

The automatic control of gliding parachute systems has been considered for the 

recovery of sounding rockets and in various military airborne operations. Control can 

be effected hy a servo-motor pulling on the shroud lines of the parachute which causes 

a banked turn of the parachute and a change in the direction of flight. Flight tests 

of an automatic-homing control system have been reported [1] which detect the angular 

error between the line of flight and the target by means of a ground based transmitter 

and a pair of directional antennas located on board the parachute. Referring to Fig. 1 

where p is the position vector of the parachute relative to the fixed target in the horizontal 

plane, v is the horizontal component of the velocty vector of the parachute relative to 

air, and w is the wind velocity vector, the automatic-homing control system attempts 

to align v with -p, i.e. to keep the angle 7 near zero at all times. Goodrick [2] analyzed 

the wind effects on a bang-bang (full-on or full-cff) version of this control system and 

showed that increasing the horizontal system velocity relative to air tends to decrease 

the terminal distance error from the target in the presence of wind distortion. Murphy 

[3] analyzed the performance characteristics of the automatic-homing control system for 

the ideal r'tuation in which the angle 7 in Fig. 1 is maintained null at all time. Under 

the condition that the magnitude of the wind velocity vector w be less than the magnitude 

of the system horizontal velocity vector v relative to air, i.e. ||w||<||v||, the parachute 

possesses a wind penetrating capability and the potential of reaching the target under 

arbitrary wind directions. The assumption is made that the initial altitude is properly 

chosen in accordance with the wind angle Lw and the ratio llvll/'MI. 

In this report the control of a gliding parachute is viewed in the context of optimal 

control theory. The basic philosophy is taken that at some time t0 intermediate between 

the launch time 0 and the terminal time T, 0< tQ <T, an estimate w of the wind 

vector is made available based on measurements taken in the interval0< t < t<,. Under 

the assumpt on that the wind remains constant over tQ < t < T, an optimal control problem 

is formulate«.1 which minimizes the terminal distance error from the target. The solution 

to this problem involves integrating a system of four nonlinear differential equations with 

mixed boundary conditions, i.e., a two point boundary value problem. An approximate 

solution to this problem is obtained which results in a sub-optimal feedback control law. 

Since the sub-optimal solution is a closed-iocp control law, this feedback controller can 

be used on-line as new measurement! of the wind vector w become available. The filtering 

problem of estimating the wind based on available measurements is not considered in 

tnis report. 

>  * 
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The equations of motion and optimal control system formulations are presented in 

Section II. The sub-optimal control solution is presented in Section III. Various 

extensions of this work are indicated in Section IV. 

II.   Optimal Control Problem Formulations 
* 

Assuming a constant wind w in thfc Horizont?' "tone, a constant rate of descent v , 

and an initial altitude h0 at launch time, the equation» of motion governing the parachute 

can be represented in the horizontal plane according to 

v   +   w, 0< t < T   «   ho/i> (1) 

In this report the velocity vector v(t) will be assumed to be constant in magnitude 

HvWII -T|v,(t)|3 + |v2(t)|»] * - a - constant. 

Then v(t) can be represented by 

v, (t) * a cos co(t) 

Vj(t) ■ a sin <o{t) 
<2) 

where the angle co * & is related to the bank angle 0 of the parachute via the well known 

relation 

w 
llvll 

tan0. (3) 

Since the bank angle 0 can be directly manipulated by changes in the servo-motor 

connecting the shroud lines, it is sufficient to summarize (1) - (3) by 

p, ■ a cos fo + Wi 

Pa - a sin co + w2 

co     '   u to < t < T 

when u is regarded as the control variabh. 

(4) 

^     .A, 
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Lei p(to). WUQ) and w be given at «me initial time to in the interval fX to < T. 

A performance index which reflects a number of desirable features for this problem is 

P - aiiproii3 + 
2 

w(T) - 1? - »I3 + q* T 
/|u{t)|2dt 

2(T-t0)  t0 

(5) 

where qt and q3 are non-negative weighting parameters. The first term in (5), 1/2||p(T)||2, 

reflects the desirability of minimizing the Euclidean distance from the target at the terminal 

time T. The second term with weighting parameter q, reflects the desirability of having 

the parachute point upwind at the terminal time in order to reduce the total horizontal 

velocity at touch-down. The third term with weighting parameter q2 reflects the cost 

of control effort in terms of the "a «rage power" expended over the interval to < t 

<T. 

Before proceeding with the necessary conditions for a minimum of (5), some further 

comments regarding the role of the weighting parameters is in order. In the absence 

of any other constraints on the control variable u, it is necessary to choose q2 > 0 in 

order to be assured of a meaningful solution. Physically, an optimal control solution 

with cfo small will lead to relatively smaller values of the to'.ninal distance error ||p(T)|| 

but will generally require relatively larger bank angles <p of the parachute, in contrast 

vith larger values for qs. In the interest of making ||p(T)f| as small as possible, a meaningf JI 

solution doe* result for qa»0 provided a constraint on u is assumed of the form |u(t)|'«M, 

i.e. the bank angle 0 is affectively limited by s' ie upper bound. However, the analytical 

solution to this problem is less tractable than t.« unconstrained problem with q2 > 0. 

As will be indicated in Section MB, the solution in the constrained optimization problem 

is bang-bang followed by a possible null interval, i.e. u(t) * ± M or 0, which implies 

instantaneous reversal of bank angles. Since the dynamics of the servo-motor and bank 

angle rates are not reflected in the equations of motion (4) the value of this problem 

(q3 - 0\ is probably of less practical importance although it is of theoretical interest. 

A further comment regarding the performance index (5) refers to the second term 

with weighting parameter qt. There might be some motivation for choosing q, « o and 

adding the terminal constraint that w(T) - Aw + n. However, as in täte case with potential 

terminal constrainst on p(T), it will not generally be possible to satisfy such constraints 

in the fixed interval (t^, T) tor any but a email set of initial conditions. In a practical 

implementation of an optimal control law, qt would probably be chosen as zero with 

a programmed command that with A T seconds to go the parachute execute a rapid turn 

into the wind regardless of the distance from the target. 

* - 
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A.   Transformation to Normalized Variables 

Let a time-varying transformation of the origin be made according to 

Y   -   p   +   (T-t) w       , to < t < T. 

Then minimizing the terminal distance ||p(T)|| is equivalent to minimizing ||y(T)||.    In 

addition, let the independent variable be transformed via 

r   -   ±3? 
T-to 

(7) 

and define new dependent variables via 

Vi 

o(T-to) 
i  Xj 

Va 
a(T-to} 

x3 - w (8) 

In terms of these variables, the equations of motion (4) become 

x,' * cos x3 

Xj * sin x3 (9) 

x3' - (T-to)u        (KK1 

where prime denotes differentiation with respect to T- 

The performance index (5) becomes 

where 

a1 (T-to)2 

fix, (DP + |x2(1)|» + Q,|x3(1)-Z* - irl2 

fc + Qa/-|u(r)Pdr| 
(10) 

0| ' !?W=%>  ,  °* ' S^t^P . (11) 

/ 
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Hence minimizing (5) or (10) is equivalent to minimizing 

P - % flx,(1)|a + |x,(1)|a + Q,|x3(1) - /? - jr|2 

L i -i 
|u(T)|JdrJ + 0, / 

o 

(12) 

The major advantage to reformulating the problem in terms of the x and r variables 
relates to the calculations needed in developing the sub-optimal control law in Section III. 

B,    Necessary Conditions for Optimal Control 

The Hamiltonlan for the unconstrained optimal control problem of minimizing (12) 
(QjX)) with the equations of motion (9) is given by 

H(X,x,u) » Xtcosx3 + Xa sin x, + (T-t0) X, u + % Q2 uJ (13) 

where (X,,Xi,X3) are the co-state or adjoint variables for this problem whicn satisfy the 
differentia! equations 

xf.-IJL.   -0 

X,' - - - 3H 

X/-- 

dXj 

dH 

3xj 

(14) 

» Xi  sin x3 — Xj cos x3 

Applying the "Minimum Principle" of optima! control theory [4] ,the necessary conditions 
for (12) to achieve a minimum are that H(X,x,u) be minimized over u, i.e. 

T~t0     * 
Oa 

and that the following transversality conditions be satisfied: 

(15) 
:   > 

X,(1) - x,(1) , X,(1) - xad) 

X3<1) - 0-1 [x3(D - & - *) . 

(16) 

5 
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Combining (9) with (14) - (16), and (»«fining 

X4 ■ X3, (17) 

it fellows that the necessary conditions for the unconstrained optimal control problem 

involve solving the two point boundary value problem: 

xi ■   COS X3 

» 
-   sin  x3 

X3 (T-to)1  ^ 

Qa 

x; ■   X|(1) sin x3 - xj(1) cos xs 

(18) 

subject to the given initial conditions 

Xl(0)   -   1    [Pl(to)   +   (T-toJw,] 
a(T-to) 

x,(0) 1—   [p,(to)   +   (T-to)wa] 
a(T-tc» 

(19) 

xj(0)   -   u}(to) 

and the terminal condition 

x4(1) - Q, (x3(1) - F - *] . (20) 

By u reduction of (18) to three differential equations involving dx,/dx3, dx,/dx3 

end dx4/dx3, it is possible to dsrive three algebraic equations in the three unknowns 

Xi(1), xj(1) and X4<0) which depeinJ on the given initial conditions in (19)   However, ? 

these equations involve Elliptic integrals of the first and second kind with arguments 

depending on the mixed boundary data (see Appendix). He^ce an exact analytical solution 

to (18) - (20) via this approach does not appear promising, although some approximations 

to these eqiations might be fruitful.   This has not been explored in any detail. 

^    3 
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In the can of the constrained optimal control problem in which Q2 

constrained via |u(tVj < M, the Hamiltonian becomes 
0 and u is 

H(X,x,u) Xj cos x3 + Xj sin x3 + (T - to) X3u 

where (Xt Aa.Xs) satisfy the same differential equations as in (14).  However, in this case 

the minimum principle leads to 

£ -M if X3 > 0 

+M if X3 < 0 

J no conclusion if X3 

The appropriate value for u* over a singular interval during which X3 * 0 can be resolved 

by the condition that X3 « 0 ■* X3 
r 0 •» x3 - constant ■* x/ * 0 ■• u* * 0. Moreover, 

if a singular control interval is achieved on some time interval contained within the given 

interval to < t < T, the control remains singular, i.e. null, throughout the remainder 

of the interval. This follows because u* ■ 0 •*■ xj ■ 0 which means x4 remain? at zero 

for the remainder of the in'^rval. Hence the optimal control is bang-bang-c rf for iSe 

constrained problem with no intermediate singular intervals. It is difficult to say how 

man« switches will occur during the interval t0 < t < T, although presumably more 

switches will occur when the parachute is close to the target with a large amount of 

time to go until touch down. 

In summary, the solution to the constrained optimal control problem involves solving 

the two point boundary value problem: 

*1 COS Xj 

xj    -     sin x3 

x3'   -     -(T - to) M Sgn l, 4) 
* U 

X|(1) sin xj - Xj(1) cos x3 

subject to the initial and terminal data in (19) and (20), where tne "Sgn" function is 

defined by 
-4 
3 
f 
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w^ y 

Sgn(x) 
f+1 if x > 0 

0 If x ■ 0 
-1 if x < 0 

Ik. 

The open-loop optimal control solution u*{r,p(t0),co(t0)), 0 < r < 1, regarded as 
a function, of the initial conditions p{t0) and w(t0), becomes a closed-'oop or feedback, 
control law for either of the above problems simply by choosing r » 0 and using the 
continuous variables j/(t) and w(t) in place of p(t0) and w(t0). In this »ay u*iO,p(t),w(t)) 
is the optimal control for every t based on continuous measurements in p(t) and w(t). 

Hi,   A Sub-Optimal Feedback Control Law 

In the interest of obtaining a feedback, i.e. closed-loop, contro* law, an approximate 
solution will be developed in this section to the necessary conditions, (18) - (20), f >r 
the unconstrained optimal control problem.   Let a parameter € be defined by 

(T-to)1   .    «'(T-tp)4 

and consider (18) - (20) In vector notation: 

(21) 

x* - f(x,r,€) 

COS X, 

sin Xj 

-€ X4 

Xi(1) sin xs - Xj(1) cos x3 

A x(0) + B x(1) - f 

where the matrices A, B and f are given by 

A - 

10 0 0 
0 10 0 
0 0 10 
0    0    0    0 

, B 

(22) 

(23) 

> 

Ö 0   0   3 " a 
0 
0 

000 
000 

,r - ß 
1 

0 0 -Q,   1 -Qtl 

(24) 

8 
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and the constants i.aß,y,&) are defined as 

a ■» X! (0) ■ 1 

ß - xa(0) 

o(T-to) 

1 
a(T-to) 

7 ■ x3(0) ■ w(to) 

u - &    +. * 

[Pi (to) + (T-to)w, ] 

[Pa(to) + (T-to)w,] 
(25) 

\u view of the analytic properties of the function f(x,r,€), a Taylor series expansion of 

the solution x(t,€) to (22) and (23) about S ■ 0 will exist for sufficiently smai: S. Thus 

n»0 den | n! 
€-0 

(26) 

and an approximate solution to the problem is reoresented by retaining a finite number 

of terms in the series (26). The corresponding approximation to the optimal control 

u* given by (15) and (17) is obtained from 

N 
0(r,€) *-   £   *n«i(r.6) 

T-to     n-0    3e" 
en 

6*0n! 
(27) 

The sub-optimal feedback control law follows by choosing r - 0 in (27) and letting the 

initial time t^ in (25) be repiactd by running time t. 

Before proceeding with the calculations of the coefficients in (26), it should be pointed 

out that e • 0 corresponds to no control effort (u * 0) expanded on the interval 

XQ < t < T. This is evident since € • 0 implies Q2 ■ <*> for which u ■ 0 is the optimal 

solution in minimizing (12). In other words, tiv nominal solution in this approximation 

is the uncontrolled descent of the parachute. 

In order to simplify the notation, let the components of the vector coefficients in 

(26) be represented by (en, bn, cn,dn) according to 

> 
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■nW 

cnW 

€-0 
3nx3(T,€) 

3€n 

€"40 

bn(r) 

dn(r) 

dnx,tr,€) 

e»o 

J2*iiL§L i 

A 
The zeroeth order <n * 0.1 term •<■ (26) is then obtained by solving 

COS CQ 

bn sin CQ 

(28) 

dö e0(1) sin CQ - b0(1) cos Co 

subject to the boundary conditions 

ao(0) - a , b0(0) - fi , %{0) - y 

d0('<) - Q,   Ml) - 5] 
(29) 

The solution to (28) and (29) is readily obtained es 

ao(r) a + TC 

b0(r) 

Cb(r) 

ß + rS 
(30) 

> 

d0(r)       -     (1 - T)D + Q, (y - 8) 

where     C - cos *,, S - sin y and 

D « /JC -aS (31) 

have been used for shorthand notation. 

10 
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The first order (n - 1) term in (26) it obtained by differentiating both tides of 
(22) with retpect to € and then putting 6 - 0. Thit yields the system of equation* 
for (a,, bJf Cj, d,): 

a,' -  -Sc, 

b,' Cc, (32) 

- -d„ 

d* a,(1)S~b,i1)C + [ao(1)C + bpdJSlc, 

The boundary conditions for (32), at for ail subsequent termt in the teriet (26), are given 
by 

n>1. (33) 

This followt from (23) and the fact that (A,BJ) to not depend on 6. Thua (33) yields 

•n(0) . o, bn(0) • 0, c„(0) • 0 

dnd) • Q.CnO), n >1 
(34) 

The integration of (32) subject to (33) with t^, bo and do given by (30) yields 

a,(r) - - S[-P- r» + (Q,(7-«)-D)La] 
0 2 

b,(r) -     C(S    H ♦ (Q.h-^-D)^1 

6 2 

c,(r)-     (Q,(7-*)-D)T + !r« (36) 

d, (r) -     d, (0) - [HO, (7-*) -1/3 DJ 

♦ (1 +«C ♦ «S)[(Q, (7-8)-D) £ ♦ D £] 
2 8 

11 
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where the initial condition on d,  is given by 

d,(0) - 1/3(otC+0S) D + Qj[(7-«-1/2D)Q, -1/4(cv+fttl. 

The flrv* two terms of the sub-optimal feedback control law (27) with r - 0 and 
N - 1 have be*? obtained up to this point with 

•j(0,e) £_   [do«»'+d, im ] 
T-tQ 

e_   [l+§(aC+*IS)l D + 
T-to 

(36) 

- §   [7-Ä + e(7-5-1/2D)Q, - £(aC+j3S)] Q, 
i"<o 2 

The higher order terms in the roriee (26) become i ficreesingly more tedious to obtain. 

For r ■ 2, the differential equations to be solved 'after some simplification) are 

•i -   -Ctc,]3-Sca 

ba' -   -S[c,]2 + Cc, 

ci m   _2d, 

d,' SM1) -Cb,(1) + Die,]* ♦ (1 + aC + jSSjc, 

where c, (r), Cj (r), d, (r) are given by (36) and the boundary conditions by (34). These 

equations were integrated under the special case 0, - 0 with the result that the desired 

initial condition on ds is 

Q» -ö: da(0) - DI-I-&D* +£(«e+0S) 
IB      ID 40 

+ 4 (aC+0S)»J 
ii 

The interesting feature about the case Qt - 0 is the observation that the sub-optimal 

control law contains 0 as a factor - at least as far m the first three terms in (27) have 

bean computed.   Thus it would appear as though the quantity D in (31), 

D - Xa(0) cos xj(0)- X](0) sin x,(0) 

12 

(37) 
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plays a major role in the optimal feedback control law. 

It la instructive to refer the above obtained sub-optimal control law back to the 

original coordinate system. Assuming Qt - 0 in (36) and referring to (37), (25), (21), 

(9) and (7), this results in 

0--JI=i)a y'Ev[1 + JI=JL3/v+ ...) (38) 
<te . 3qa 

In the above, y ■ y(t) is the moving-origin coordinate system defined in (6), i.e. 

V ■ p + (T -1) w, 

and E is the 2 x 2 matrix 

E i:3 
which effectively generates the 0 term in (37), i.e. 

y'Ev   ■   yiv3-yavr 

IV.   Concluding Remarks 

13 
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..« Given an estimate of the wind vector w at some initial time to intermediate between 

launch and touch down, and given *he initial position and velocity vectors (relative to 

air) of the parachute, trn optimal control of the parachute has been considered which 

strives to minimize the terminal distance of the parachute from the target at the time 

of to ich down. A sub-optimal feedback control Jaw has been obtained which can be 

used in a closed-loop manner based on continuous measurements of the position and 

velocity vector» of the parachute. The first order approximation to this control law is 

strikingly simple end takes the form 

fl- JI=51L     (y|Wj  - yaV,i {38) 
9a 
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where Yi ■ Pi + (T - t)wi and Va ■ Pi + C"-t)Wj are the horizontal components 

of the position vector p ■ p(t) of the parachute at time t with the origin translated along 

(T - t)w for each t in the interval 0 < t < T, and v ■ v(t) is the parachute velocity 

vector relative to air in the horizontal plane. In order for this control law to be effective, 

the initial launch position must be in the vicinity of the free descent path of the parachute 

which would hit the target at touchdown in the presence of a constant known whd. 

This is a reasonable assumption in view of the limited degree of control available in thi 

gliding parachute system. 

The above control law can be easily updated as new estimates of the wind become 

available. However, it is the DC. or mean value of the wind, rather than the instantaneous 

value, which should be used as the estimate since the control law is optimal only for 

a constant wind vector w on the ensuinq interval T > t > to- Although (38) is only 

a first order approximation, the term in brackets, y,va -yav,, appears to be a 

homogeneous factor in each of the terms of the Taylor's series expansion (27). This 

was only validated for the first three terms of (27) and applies to the special optimization 

problem of minimizing the performance index (5) with H,  - 0 and q, > 0. 

The reciprocal of the weighting parameter q3 in (39) represents the gain of the 

feedback controller which must be adjusted to achieve a small terminal distance error 

at touchdown without incurring excessive bank angl<ts during the parachute maneuvering 

over tha interval 0 < t < T. The bank angle 0 upon commands from the controller 

electronics must be designed to achieve the desired relationship 

0 . tan"1      a(T"t)   lV>v, - y,v,] 
9 <h 

(40) 

without significant delays. 

Future work should include the following: (i) A computer simulation of the 

suboptimal control law and a comparison of the results w ith optimal control trajectories 

obtained by solving the two point boundary value problem for various initial conditions. 

\'.\) Derivation of the appropriate filtering equations for estimating the wind based on 

available measurements. Computer simulation of the controller-filter combination for 

random wind profiles. (Hi) A formulation of the problem with a random wind which 

seeks to minimize the expected value of the terminal distance from the target. In this 

vain, random terminal times might be appropriately studied to account for inaccurate 

altitude data, (iv) A formulation of the problem with the magnitude of the parachute 

velocity vector a control variable in addition to the direction 
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Appendix I 

Reduction of (18) to Elliptic Integrals 

Successive divisions of the equations in (18) by x3' yields (with € defined by (21): 

dxi 

dx~3 

cosx3 

ex4 

dx2 

dx, 

sinx3 
(41) 

dx4 x2(1)cosx3 - Xi(1)sinx3 

dx3 € X4 

The third of these equations cen be integrated directly: 

xl    -   C, + |- [x,(D cos x3   - xj(1) sin x3J (42) 

where the constant of integration Ci is given by 

C,    «    (X4(1 ))a—|'x,(1) cos x3(1)   -  x3(1) sin x3(1)). (43) 

Using the relation J =£a   « -€/dr' *   -Grfor   T« 1» the first integral is obtained as 
x4 

§V/Cl + 2d_ - |F(k,0.) - F(M0)| (44) 

where 

d ->/lx,(1)|* ■» |x8(1)|J . 

ka- 4d 
C,€ + 2d 

*0- V2 [x,(0) + tarf» J^illi 1 
X|(1) 

*,- 1/2 [x,(D + tar"' üill' ' 
x,(1) 

(45) 

(46) 
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T3>- Tf 

and F(M) is an Elliptic integral of the first kind. 

Substituting (42) into the first of the equations in (41) leads to the expression 

x,(1) - x,(0) - ± 1- J e8inP   K/c, + g_ cos(x3(0) + ß) 

VCl   +   €    cos<x3<1> 

(1 _l_)(F(k,0,) - F(k,*0>> + ~- M+W ~ E(*o\a)H 

where 0O» <h, d, C, and k are as defined above, 

1 ■ 

0 - tan"1  *2<1) , sin2 a » k2 

x,(1) 

and E(# Vx) is an Elliptic integral of the second kind. 

Substituting (42) into the second equation of (41) will lead to a similar relation 

as (47) involving Elliptic integrals of the first and second kind. This equation in conjunction 

with (44) and (47) comprises three algebraic equations in the three unknowns x, (1), x2(1) 

and X4K)), given the initial conditions X|(0), x,(0) and x3(0f. However, the arguments 

of the Elliptic integrals depend on the boundary data in a mixed way. 

■Parachute 
Directional 
Antenna 

Target I 

Vector Relations for Parachute Dynamics in the Horizontal Plane 
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